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(T3) combinatorial cuspidalization and “FC = F” results

(cf. Mochizuki’s overview)

Σ: the set of prime numbers s.t. #Σ = 1 or Σ is the set of ∀prime numbers
n ≥ 0
k: an algebraically closed field of characteristic ̸∈ Σ
X: a hyperbolic curve/k of type (g, r)
Xn: the n-th configuration space of X

Πn
def
= π1(Xn)

Σ

Definition� �
α ∈ Out(Πn)

• α: F-admissible
def⇔ α(F ) = F for ∀fiber subgroup F ⊆ Πn

• α: FC-admissible
def⇔ α: F-admissible

and, moreover, for 1 ≤ ∀m ≤ n,
the Πm-conj. class of isom.s of

Ker(Πm ↠ Πm−1)
∼← π1(a geom. fiber of Xm → Xm−1)

det’d by α induces a self-bijection of the set of cuspidal inertial subgroups

Out(Πn) ⊇ OutF(Πn) ⊇ OutFC(Πn)� �
Combinatorial Cuspidalization� �
the issue of whether or not the natural homomorphism

OutF(C)(Πn+1) // OutF(C)(Πn)

is injective (resp. surjective; bijective)� �
“FC = F” results� �
the issue of whether or not the natural inclusion

OutFC(Πn)
� � // OutF(Πn)

is bijective� �
Let us prove some results related to these two issues

as applications of combinatorial anabelian results.
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Let us prove some results related to these two issues
as applications of combinatorial anabelian results.

Theorem 0 [Combinatorial Anabelian Results]� �
G: a semi-graph of anabelioids of PSC-type

(1) [Prp 2.6 of my 1st talk, i.e., of the Monday 2nd talk]

ΠG + (ΠG
open

⊇ ∀ΠH ↠ Π
ab/Cusp
H ) ⇒ ΠG + cuspidal subgroups

(2) [Main Thm of §4 of my 1st talk, i.e., of the Monday 2nd talk]

ΠG + (ρ : I
PIPSC→ Aut(G) ↪→ Out(ΠG)) ⇒ ΠG + verticial subgroups� �

Definition� �
(1) ρ: of IPSC-type

def⇔
• ∃k: an algebraically closed field of characteristic ̸∈ Σ

• ∃X log: a stable log curve/the standard log point Spec(k)log
def
= “(Spec(k),N)”

• ∃α : GΣ
Xlog

∼→ G s.t.

∃1 // ΠGΣ
Xlog

//

≀Πα

��

π1(X
log)Σ //

≀
��

π1(Spec(k)
log)Σ //

≀
��

1

1 // ΠG // ΠI
// I // 1

(2) ρ: of PIPSC-type
def⇔ I ∼= ẐΣ, ρ|∃an open subgroup of I is of IPSC-type� �
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Theorem 1 [CbTpI, Theorem A, (ii)]� �
Im(OutF(Πn+1)→ OutF(Πn)) ⊆ OutFC(Πn)� �
We may assume: n = 1
(by replacing (Πn,Πn+1) by “(Ker(Πn → Πn−1),Ker(Πn+1 → Πn−1)”)

α ∈ OutF(Π2), i ∈ {1, 2}
Π2

α

∼
//

pri
��

Π2

pri
��

Π1
∼
β

// Π1

Remark: β does not depend on the choice of i (cf. [CbTpI, Theorem A, (i)]).

β
??
∈ OutFC(Π1), i.e., does β preserve the cusps?

⇑ by Thm 0, (1)

Π1
β

∼
// Π1

∀H
?�

open

OO

∼
β|H

//

����

β(H)
?�

OO

����

Hab/Cusp ∼
??

// β(H)ab/Cusp

For simplicity:
Consider the case: H = Π1 (⇒ β(H) = Π1)
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Thus:
Claim� �
pr1, pr2 : Π2 ↠ Π1

??⇒ Πab-Cusp
1 ⊆ Πab

1� �
If r = 0, then Πab-Cusp

1 = {0}
⇒ We may assume: r > 0

δ ⊆ X ×k X: the diagonal divisor
s : OX×kX ↪→ OX×kX(δ)

V def
= V(OX×kX(δ))

((QQ
QQQ

QQQ
QQQ

QQ
V× def

= V \ zero-sect.? _oo

vvmmm
mmm

mmm
mmm

mm

X ×k X X2
? _

(pr1,pr2)
oo

⇒
Π2

s|X2

����

(( ((RR
RRR

RRR
RRR

RRR
R

Π2/[Π2,Ker(pr1, pr2)]

∼
vv

1 // π1(a geom. fiber of V× → X ×k X)

≀fix

// π1(V×) // Π1 × Π1
// 1

ẐΣ

H2(Π1 × Π1, ẐΣ)
Π1: free

∼→ H1(Π1, H
1(Π1, ẐΣ))

∼→ HomẐΣ(Π
ab
1 , (Πab

1 )∨)

Πab
1

����

image of [π1(V×)]
// (Πab

1 )∨

Π
ab/Cusp
1

(ẐΣ)×·Poincaré duality

∼ // (Π
ab/Cusp
1 )∨

?�

OO

In particular: Πab-Cusp
1 = Ker(image of [π1(V×)])
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Theorem 2 [CbTpII, Theorem A, (ii)], [HMT, Corollary 2.2]� �
OutF(Πn) = OutFC(Πn)
if either ‘n = 2, g = 0’, ‘n = 3, r ̸= 0’, or ‘n ≥ 4’� �
Consider the case:
• r ≥ 2

• α ∈ OutF(Π2) whose image β
Thm 1
∈ OutFC(Π1) acts on the set of cusps trivially

a “hint” of the C-admissibility of α

β ↷ Π1

preserves the cusps
(by Thm 1)

↑ pr1

α ↷ Π2 β ↷ Π1

∪

α ↷ Ker(pr1)
Does this preserve the cusps?
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Theorem 3 [CbTpII, Theorem A, (i)]� �
OutF(Πn+1)→ OutF(Πn) is:
(1) injective if ‘n ≥ 1’ and ‘(n, r) ̸= (1, 0)’
(2) bijective if either ‘n ≥ 4’ or ‘n ≥ 3 and r ≥ 1’� �

by Thm 1, 2, together w/ some “standard arguments”
(cf., e.g., Minamide’s talk yesterday for Thm 3, (1))

Theorem 4 [CbTpII, Theorem B, (i), (ii)]� �
Suppose: (g, r) ̸∈ {(0, 3), (1, 1)}
⇒
Out(Πn) = OutF(Πn)×Sn if (n, r) ̸= (2, 0)

(
Thm 2
= OutFC(Πn)×Sn if either ‘n = 2, g = 0’, ‘n = 3, r ̸= 0’, or ‘n ≥ 4’)� �

by a main result of [MT] (cf. also Sawada’s talk yesterday) and Thm 3, (1)
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(T6) tripod synchronization and the tripod homomorphism

(cf. Mochizuki’s overview)

Σ: the set of prime numbers s.t. #Σ = 1 or Σ is the set of ∀prime numbers
n ≥ 0
k: an algebraically closed field of characteristic ̸∈ Σ

Slog def
= “Spec(k,N)”: the standard log point whose underlying scheme is Spec(k)

X log: a stable log curve/Slog of type (g, r)
G: the semi-graph of anabelioids of pro-Σ PSC-type associated to X log

X log
n : the n-th log configuration space of X log

Πn
def
= Ker(π1(X

log
n )Σ → π1(S

log)Σ) = Ker(π1(X
log
n )→ π1(S

log))Σ

Various tripods appear in X log
n .

X log = X log
1 Π1

↑

X log
2 Π2

↑

X log
3 Π3

Tripod Synchronization� �
= synchronization among the various tripods in Πn

⇒ an outer automorphism of Πn typically induces
the same outer automorphism on the various tripods in Πn� �
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Definition� �
m ≤ n

T ⊆ Πm: an m-tripod of Πn
def⇔

T : a verticial subgroup “of type (0, 3)” of “Πa geom. fiber of Xlog
m →Xlog

m−1
”

= Ker(Πm ↠ Πm−1) ⊆ Πm

Then: Out|C|(T ) ⊆ Out(T ): the subgroup consisting of α s.t.
α induces the id. on the the set of conj. classes of cuspidal inertia subgroups of T� �

Definition� �
Suppose: n ≥ 3
T ⊆ Π3: a 3-tripod of Πn

T : central
def⇔ T arises as:

X log = X log
1 Π1

↑

X log
2 Π2

↑

X log
3 Π3� �
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Theorem 5 [CbTpII, Theorem C, (i)]� �
m ≤ n
T ⊆ Πm: an m-tripod of Πn

⇒ CΠm(T ) = NΠm(T ) = T × ZΠm(T )� �
Remark� �
G: a group
H ⊆ G: a subgroup

α ∈ Aut(G)
⇒ One can define the restriction α|H ∈ Aut(H) if α preserves H ⊆ G.

On the other hand:
α ∈ Out(G) = Aut(G)/Inn(G)
⇒ One cannot define the “restriction” α|H ∈ Out(H) in general

even if α preserves the conjugacy class of H ⊆ G.
The “natural rest.” is not ∈ Out(H) = Aut(H)/Inn(H) but ∈ Aut(H)/Inn(NG(H)).

In particular:
• α preserves the conjugacy class of H ⊆ G
• NG(H) = ZG(H) ·H
⇒ One can define the restriction α|H ∈ Out(H).� �
Definition� �
m ≤ n
T ⊆ Πm: an m-tripod of Πn

• OutF(Πn)[T ] ⊆ OutF(Πn): the subgroup consisting of α s.t.
the outer autom. of Πm induced by α preserves the Πm-conj. class of T ⊆ Πm

• TT : OutF(Πn)[T ]→ Out(T ) (well-defined by Thm 5),
the tripod homomorphism associated to T

• OutF(Πn)[T : |C|] ⊆ OutF(Πn)[T ]: the pull-back of Out|C|(T ) ⊆ Out(T ) by TT� �
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Theorem 6 [CbTpII, Theorem 3.16, (v)], [CbTpII, Theorem 3.18, (ii)]� �
For simplicity: suppose n ≥ 3
(Note: ∃result related to (2) in the case of n = 2 — cf. [CbTpII, Theorem 3.17])

m ≤ n
T ⊆ Πm: an m-tripod of Πn

(1) T : central ⇒ OutFC(Πn) = OutFC(Πn)[T : |C|]

(2) m′ ≤ n
T ′: an m′-tripod of Πn

⇒ ∃a “geometric” outer isomorphism ι : T
∼→ T ′ s.t.

OutF(Πn)[T : |C|] ∩OutF(Πn)[T
′ : |C|]

TT

ttiiii
iiii

iiii
iiii

iiii TT ′

**VVV
VVVV

VVVV
VVVV

VVVV
V

Out(T )
Out(ι)

∼ // Out(T ′)

commutes.� �
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Glueability of Combinatorial Cuspidalizations

One Dimensional Case

Definition� �
• Aut|grph|(G) ⊆ Aut(G): the subgroup consisting of α s.t.

α ↷ the underlying semi-graph is trivial

• Dehn(G) ⊆ Aut|grph|(G): the subgroup consisting of α s.t.
for ∀v ∈ Vert(G), α|Gv is trivial

• Glu|grph|(G) ⊆
∏

v∈Vert(G) Aut
|grph|(Gv): the subgp consisting of (αv)v s.t.

χcycl
v (αv) = χcycl

w (αw) for ∀v, w ∈ Vert(G)� �
Theorem 7 [CbTpI, Theorem B, (iii)]� �
(1) The natural homomorphism

Aut|grph|(G) //
∏

v∈Vert(G)

Aut|grph|(Gv)

factors through the subgroup

Glu|grph|(G) ⊆
∏

v∈Vert(G)

Aut|grph|(Gv).

(2) The resulting homomorphism

Aut|grph|(G) // Glu|grph|(G)

is a surjective homomorphism whose kernel is given by

Dehn(G) ⊆ Aut|grph|(G).

1 // Dehn(G) // Aut|grph|(G) // Glu|grph|(G) // 1.� �
Observe: (1) is a formal consequence of “Synchronization of Cyclotomes”.
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Corollary 8 [CbTpII, Theorem A, (iii)]� �
Suppose: (g, r) ̸∈ {(0, 3), (1, 1)}
⇒ The injective (cf. Minamide’s talk yesterday) homomorphism

OutFC(Π2) ↪→ OutFC(Π1) is not surjective� �
Proof of the assertion that OutFC(Π3) ↪→ OutFC(Π1) is not surjective

The structure of (· · · → Πm+1 → Πm → . . . ) depends only on (g, r)
⇒ We may assume: X log is totally degenerate, i.e., ∀vertex of G is “of type (0, 3)”

(in a spirit of Tripodal Transport cf. Mochizuki’s talk, last week)

(g, r) ̸∈ {(0, 3), (1, 1)} ⇒ ∃v, w ∈ Vert(G): distinct
αv ∈ Out|C|(Πv), αw ∈ Out|C|(Πw) s.t.

(a) αv ̸= φ−1αwφ for ∀“geometric” isomorphism φ : Πv
∼→ Πw

(b) χcycl
v (αv) = χcycl

w (αw)

(cf. “Gal(Q/Q) ⊆ Out|C|(T )”)

(b), Thm 7, (2)⇒ ∃α ∈ Aut|grph|(G) (⊆ OutFC(Π1)) s.t. α|Πv = αv, α|Πw = αw

Assume: OutFC(Π3) ↪→ OutFC(Π1) is surjective

⇒ ∃α3 ∈ OutFC(Π3) whose image in OutFC(Π1) is = α
But this contradicts (a) and Thm 6, (2).
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Higher Dimensional Case

For simplicity: suppose n ≥ 3
(Note: ∃result in the case of n = 2)

Definition� �
• OutFC(Πn)

|grph| ⊆ Out(Πn):

the pull-back of Aut|grph|(G) ⊆ OutFC(Π1) by
the injective (cf. Minamide’s talk yesterday) hom. OutFC(Πn) ↪→ OutFC(Π1)

• Glu|grph|(Πn) ⊆
∏

v∈Vert(G) OutFC((Πv)n)
|grph|: the subgp consisting of (αv)v s.t.

Ta ctrl tpd in (Πv)3(αv) = Ta ctrl tpd in (Πw)3(αw) for ∀v, w ∈ Vert(G)
(Note: A central tripod in (Πv)3 is a Π3-conjugate of a central tripod in (Πw)3.)� �

Theorem 9 [CbTpI, Theorem F]� �
(1) v ∈ Vert(G) ⇒ (Πv)n ⊆ Πn: commensurably terminal

(2) v ∈ Vert(G) ⇒ ∀ ∈ OutFC(Πn)
|grph| preserves the conjugacy class of (Πv)n ⊆ Πn.

(1), (2) ⇒ One may define a “restriction homomorphism”

OutFC(Πn)
|grph| //

∏
v∈Vert(G)

OutFC((Πv)n)
|grph|.

(3) The above “restriction homomorphism” factors through the subgroup

Glu|grph|(Πn) ⊆
∏

v∈Vert(G)

OutFC((Πv)n)
|grph|.

(4) The resulting homomorphism

OutFC(Πn)
|grph| // Glu|grph|(Πn)

is a surjective homomorphism whose kernel is given by

Dehn(G) ⊆ OutFC(Πn)
|grph|.

1 // Dehn(G) // OutFC(Πn)
|grph| // Glu|grph|(Πn) // 1.� �

Observe: (3) is a formal consequence of “Tripod Synchronization” (cf. Thm 6).
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Corollary 10 [CbTpII, Theorem C, (iv)]� �
Suppose: n ≥ 3
T ⊆ Π3: a central 3-tripod of Πn

Suppose, moreover: either r ̸= 0 or n ≥ 4

(1) The tripod homomorphism

TT : OutFC(Πn)
Thm 6, (1)

= OutFC(Πn)[T ] // Out(T )

factors through the subgroup “GT” of Out(T ).

(2) The resulting homomorphism

TT : OutFC(Πn)
Thm 6, (1)

= OutFC(Πn)[T ] // “GT” in Out(T )

is surjective.� �
Proof of (2)

The validity of the assertion depends only on (n, g, r)
⇒ We may assume: X log is totally degenerate, i.e., ∀vertex of G is “of type (0, 3)”

(in a spirit of Tripodal Transport cf. Mochizuki’s talk, last week)

γ ∈ “GT”
⇒ ∀v ∈ Vert(G), ∃γv,n ∈ OutFC((Πv)n)

|grph| whose image in Out(Πv) is = γ
Thm 6, (2)⇒ ∀v ∈ Vert(G), Ta ctrl tpd in (Πv)3(γv,n) = γ
Thm 9, (4)⇒ ∃γn ∈ OutFC(Πn)

|grph| whose image in OutFC((Πv)n)
|grph|

is = γv,n for ∀v ∈ Vert(G)
Thm 6, (2)⇒ T(γn) = γ, as desired
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