Yuichiro Hoshi
7 July, 2021
RIMS Workshop
"Combinatorial Anabelian Geometry and Related Topics"
(T3) combinatorial cuspidalization and " $\mathrm{FC}=\mathrm{F}$ " results
(cf. Mochizuki's overview)
Σ : the set of prime numbers s.t. $\# \Sigma=1$ or Σ is the set of \forall prime numbers $n \geq 0$
k : an algebraically closed field of characteristic $\notin \Sigma$
X : a hyperbolic curve $/ k$ of type (g, r)
X_{n} : the n-th configuration space of X
$\Pi_{n} \stackrel{\text { def }}{=} \pi_{1}\left(X_{n}\right)^{\Sigma}$

Definition

$\alpha \in \operatorname{Out}\left(\Pi_{n}\right)$

- α : $\underline{\text { F-admissible }} \stackrel{\text { def }}{\Leftrightarrow} \alpha(F)=F$ for \forall fiber subgroup $F \subseteq \Pi_{n}$
- α : FC-admissible $\stackrel{\text { def }}{\Leftrightarrow} \alpha$: F-admissible
and, moreover, for $1 \leq \forall m \leq n$,
the Π_{m}-conj. class of isom.s of

$$
\operatorname{Ker}\left(\Pi_{m} \rightarrow \Pi_{m-1}\right) \leftarrow \pi_{1}\left(\text { a geom. fiber of } X_{m} \rightarrow X_{m-1}\right)
$$

det'd by α induces a self-bijection of the set of cuspidal inertial subgroups
$\operatorname{Out}\left(\Pi_{n}\right) \supseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \supseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$
Combinatorial Cuspidalization
the issue of whether or not the natural homomorphism

$$
\operatorname{Out}^{\mathrm{F}(\mathrm{C})}\left(\Pi_{n+1}\right) \longrightarrow \operatorname{Out}^{\mathrm{F}(\mathrm{C})}\left(\Pi_{n}\right)
$$

is injective (resp. surjective; bijective)
" $\mathrm{FC}=\mathrm{F}$ " results
the issue of whether or not the natural inclusion

$$
\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \longleftrightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)
$$

is bijective

Let us prove some results related to these two issues as applications of combinatorial anabelian results.

Let us prove some results related to these two issues as applications of combinatorial anabelian results.

Theorem 0 [Combinatorial Anabelian Results]
\mathcal{G} : a semi-graph of anabelioids of PSC-type
(1) $[\operatorname{Prp} 2.6$ of my 1st talk, i.e., of the Monday 2nd talk]
$\Pi_{\mathcal{G}}+\left(\Pi_{\mathcal{G}} \stackrel{\text { open }}{\supseteq} \forall \Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\text {ab/Cusp }}\right) \Rightarrow \Pi_{\mathcal{G}}+$ cuspidal subgroups
(2) [Main Thm of $\S 4$ of my 1st talk, i.e., of the Monday 2nd talk]
$\Pi_{\mathcal{G}}+\left(\rho: I \xrightarrow{\text { PIPSC }} \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right) \Rightarrow \Pi_{\mathcal{G}}+$ verticial subgroups

- Definition
(1) ρ : of IPSC-type $\stackrel{\text { def }}{\Leftrightarrow}$
- $\exists k$: an algebraically closed field of characteristic $\notin \Sigma$
- $\exists X^{\log }$: a stable log curve/the standard $\log \operatorname{point} \operatorname{Spec}(k)^{\log } \stackrel{\text { def }}{=}$ " $(\operatorname{Spec}(k), \mathbb{N})$ "
- $\exists \alpha: \mathcal{G}_{X^{\log }}^{\Sigma} \xrightarrow{\sim} \mathcal{G}$ s.t.

(2) ρ : of PIPSC-type $\stackrel{\text { def }}{\Leftrightarrow} I \cong \widehat{\mathbb{Z}}^{\Sigma},\left.\rho\right|_{\exists \text { an open subgroup of } I}$ is of IPSC-type

Theorem 1 [CbTpI, Theorem A, (ii)]
$\operatorname{Im}\left(\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)\right) \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$

We may assume: $n=1$
(by replacing $\left(\Pi_{n}, \Pi_{n+1}\right)$ by " $\left(\operatorname{Ker}\left(\Pi_{n} \rightarrow \Pi_{n-1}\right), \operatorname{Ker}\left(\Pi_{n+1} \rightarrow \Pi_{n-1}\right)\right.$ ")
$\alpha \in \operatorname{Out}^{\mathrm{F}}\left(\Pi_{2}\right), i \in\{1,2\}$

Remark: β does not depend on the choice of $i(\operatorname{cf.}[\mathrm{CbTpI}$, Theorem A, (i)]).
$\underline{\beta \stackrel{? ?}{\in} \mathrm{Out}}{ }^{\mathrm{FC}}\left(\Pi_{1}\right)$, i.e., does β preserve the cusps?
\Uparrow by Thm 0 , (1)

For simplicity:
Consider the case: $H=\Pi_{1}\left(\Rightarrow \beta(H)=\Pi_{1}\right)$

Thus:
Claim
$\mathrm{pr}_{1}, \mathrm{pr}_{2}: \Pi_{2} \rightarrow \Pi_{1} \stackrel{? ?}{\Rightarrow} \Pi_{1}^{\text {ab-Cusp }} \subseteq \Pi_{1}^{\mathrm{ab}}$

If $r=0$, then $\Pi_{1}^{\text {ab-Cusp }}=\{0\}$
\Rightarrow We may assume: $r>0$
$\delta \subseteq X \times_{k} X$: the diagonal divisor
$s: \mathcal{O}_{X \times_{k} X} \hookrightarrow \mathcal{O}_{X \times_{k} X}(\delta)$

\Rightarrow
$1 \longrightarrow \pi_{1}$ (a geom. fiber of $\left.\mathbb{V}^{\times} \rightarrow X \times_{k} X\right) \longrightarrow \pi_{1}\left(\mathbb{V}^{\times}\right) \xrightarrow{\sim}$ fix $\left.\right|^{2}$
$\widehat{\mathbb{Z}}^{\Sigma}$

$$
H^{2}\left(\Pi_{1} \times \Pi_{1}, \widehat{\mathbb{Z}}^{\Sigma}\right) \stackrel{\Pi_{1}: \stackrel{\text { free }}{\rightarrow}}{\rightarrow} H^{1}\left(\Pi_{1}, H^{1}\left(\Pi_{1}, \widehat{\mathbb{Z}}^{\Sigma}\right)\right) \xrightarrow[\rightarrow]{\sim} \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}\left(\Pi_{1}^{\mathrm{ab}},\left(\Pi_{1}^{\mathrm{ab}}\right)^{\vee}\right)
$$

In particular: $\Pi_{1}^{\text {ab-Cusp }}=\operatorname{Ker}\left(\right.$ image of $\left.\left[\pi_{1}\left(\mathbb{V}^{\times}\right)\right]\right)$

Theorem 2 [CbTpII, Theorem A, (ii)], [HMT, Corollary 2.2]
$\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)$
if either ' $n=2, g=0$ ', ' $n=3, r \neq 0$ ', or ' $n \geq 4$ '

Consider the case:

- $r \geq 2$
- $\alpha \in \operatorname{Out}^{\mathrm{F}}\left(\Pi_{2}\right)$ whose image $\beta \stackrel{\mathrm{Thm} 1}{\epsilon} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$ acts on the set of cusps trivially
a "hint" of the C-admissibility of α
$\beta \curvearrowright \Pi_{1}$
preserves the cusps
(by Thm 1)
$\uparrow \mathrm{pr}_{1}$
$\alpha \curvearrowright \Pi_{2}$
$\beta \curvearrowright \Pi_{1}$
\cup
$\alpha \curvearrowright \operatorname{Ker}\left(\operatorname{pr}_{1}\right)$
Does this preserve the cusps?

Theorem 3 [CbTpII, Theorem A, (i)]
$\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n+1}\right) \rightarrow \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$ is:
(1) injective if ' $n \geq 1$ ' and ' $(n, r) \neq(1,0)$ '
(2) bijective if either ' $n \geq 4$ ' or ' $n \geq 3$ and $r \geq 1$ '
by Thm 1,2 , together $\mathrm{w} /$ some "standard arguments"
(cf., e.g., Minamide's talk yesterday for Thm 3, (1))
Theorem 4 [CbTpII, Theorem B, (i), (ii)]
Suppose: $(g, r) \notin\{(0,3),(1,1)\}$
\Rightarrow
$\operatorname{Out}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n}$ if $(n, r) \neq(2,0)$
$\left(\stackrel{\text { Thm }}{=}{ }^{2} \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \times \mathfrak{S}_{n}\right.$ if either ' $n=2, g=0$ ', ' $n=3, r \neq 0$ ', or ' $n \geq 4$ ')
by a main result of [MT] (cf. also Sawada's talk yesterday) and Thm 3, (1)

References

[MT] The Algebraic and Anabelian Geometry of Configuration Spaces
[CbTpI] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves I: Inertia Groups and Profinite Dehn Twists
[CbTpII] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II: Tripods and Combinatorial Cuspidalization
[HMT] Combinatorial Construction of the Absolute Galois Group of the Field of Rational Numbers
scratch paper
scratch paper

Synchronization of Tripods and Glueability of Combinatorial Cuspidalizations

Yuichiro Hoshi
7 July, 2021
RIMS Workshop
"Combinatorial Anabelian Geometry and Related Topics"
(T6) tripod synchronization and the tripod homomorphism
(cf. Mochizuki's overview)
Σ : the set of prime numbers s.t. $\# \Sigma=1$ or Σ is the set of \forall prime numbers $n \geq 0$
k : an algebraically closed field of characteristic $\notin \Sigma$
$S^{\log } \stackrel{\text { def }}{=} \operatorname{Spec}(k, \mathbb{N})$ ": the standard \log point whose underlying scheme is $\operatorname{Spec}(k)$
$X^{\log }$: a stable log curve/ $S^{\log }$ of type (g, r)
\mathcal{G} : the semi-graph of anabelioids of pro- Σ PSC-type associated to $X^{\log }$
$X_{n}^{\log }$: the n-th log configuration space of $X^{\log }$
$\Pi_{n} \stackrel{\text { def }}{=} \operatorname{Ker}\left(\pi_{1}\left(X_{n}^{\log }\right)^{\Sigma} \rightarrow \pi_{1}\left(S^{\log }\right)^{\Sigma}\right)=\operatorname{Ker}\left(\pi_{1}\left(X_{n}^{\log }\right) \rightarrow \pi_{1}\left(S^{\log }\right)\right)^{\Sigma}$
Various tripods appear in $X_{n}^{\log }$.
$X^{\log }=X_{1}^{\log }$
Π_{1}
\uparrow
$X_{2}^{\log }$
Π_{2}
\uparrow
$X_{3}^{\log }$
Π_{3}

Tripod Synchronization
$=$ synchronization among the various tripods in Π_{n}
\Rightarrow an outer automorphism of Π_{n} typically induces
the same outer automorphism on the various tripods in Π_{n}

Definition
$m \leq n$
$T \subseteq \Pi_{m}$: an m-tripod of $\Pi_{n} \stackrel{\text { def }}{\Leftrightarrow}$
T : a verticial subgroup "of type $(0,3)$ " of " $\Pi_{\text {a geom. fiber of }} X_{m}^{\log } \rightarrow X_{m-1}^{\log }$ "
$=\operatorname{Ker}\left(\Pi_{m} \rightarrow \Pi_{m-1}\right) \subseteq \Pi_{m}$
Then: $\operatorname{Out}^{|\mathrm{C}|}(T) \subseteq \operatorname{Out}(T)$: the subgroup consisting of α s.t.
α induces the id. on the the set of conj. classes of cuspidal inertia subgroups of T
Definition
Suppose: $n \geq 3$
$T \subseteq \Pi_{3}$: a 3-tripod of Π_{n}
T : central $\stackrel{\text { def }}{\Leftrightarrow} T$ arises as:
$X^{\log }=X_{1}^{\log }$
\uparrow
$X_{2}^{\log }$ Π_{2}
\uparrow
$X_{3}^{\log }$
Π_{3}

Theorem 5 [CbTpII, Theorem C, (i)]
$m \leq n$
$T \subseteq \Pi_{m}$: an m-tripod of Π_{n}
$\Rightarrow C_{\Pi_{m}}(T)=N_{\Pi_{m}}(T)=T \times Z_{\Pi_{m}}(T)$

Remark
G : a group
$H \subseteq G$: a subgroup
$\alpha \in \operatorname{Aut}(G)$
\Rightarrow One can define the restriction $\left.\alpha\right|_{H} \in \operatorname{Aut}(H)$ if α preserves $H \subseteq G$.

On the other hand:
$\alpha \in \operatorname{Out}(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$
\Rightarrow One cannot define the "restriction" $\left.\alpha\right|_{H} \in \operatorname{Out}(H)$ in general even if α preserves the conjugacy class of $H \subseteq G$.
The "natural rest." is not $\in \operatorname{Out}(H)=\operatorname{Aut}(H) / \operatorname{Inn}(H)$ but $\in \operatorname{Aut}(H) / \operatorname{Inn}\left(N_{G}(H)\right)$.
In particular:

- α preserves the conjugacy class of $H \subseteq G$
- $N_{G}(H)=Z_{G}(H) \cdot H$
\Rightarrow One can define the restriction $\left.\alpha\right|_{H} \in \operatorname{Out}(H)$.

Definition
$m \leq n$
$T \subseteq \Pi_{m}$: an m-tripod of Π_{n}

- Out ${ }^{\mathrm{F}}\left(\Pi_{n}\right)[T] \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)$: the subgroup consisting of α s.t.
the outer autom. of Π_{m} induced by α preserves the Π_{m}-conj. class of $T \subseteq \Pi_{m}$
- $\mathfrak{T}_{T}: \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T] \rightarrow \operatorname{Out}(T)$ (well-defined by Thm 5),
the tripod homomorphism associated to T
- $\operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T:|\mathrm{C}|] \subseteq \operatorname{Out}^{\mathrm{F}}\left(\Pi_{n}\right)[T]$: the pull-back of $\operatorname{Out}^{|\mathrm{C}|}(T) \subseteq \operatorname{Out}(T)$ by \mathfrak{T}_{T}

Theorem 6 [CbTpII, Theorem 3.16, (v)], [CbTpII, Theorem 3.18, (ii)]
For simplicity: suppose $n \geq 3$
(Note: \exists result related to (2) in the case of $n=2-\mathrm{cf}$. [CbTpII, Theorem 3.17])
$m \leq n$
$T \subseteq \Pi_{m}:$ an m-tripod of Π_{n}
(1) T : central $\Rightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)=\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T:|\mathrm{C}|]$
(2) $m^{\prime} \leq n$
T^{\prime} : an m^{\prime}-tripod of Π_{n}
$\Rightarrow \exists \mathrm{a}$ "geometric" outer isomorphism $\iota: T \xrightarrow{\sim} T^{\prime}$ s.t.

commutes.

One Dimensional Case

Definition

- Aut ${ }^{|\operatorname{grph}|}(\mathcal{G}) \subseteq \operatorname{Aut}(\mathcal{G})$: the subgroup consisting of α s.t.
$\alpha \curvearrowright$ the underlying semi-graph is trivial
- $\operatorname{Dehn}(\mathcal{G}) \subseteq \operatorname{Aut}^{|\operatorname{lgrph}|}(\mathcal{G})$: the subgroup consisting of α s.t. for $\forall v \in \operatorname{Vert}(\mathcal{G}),\left.\alpha\right|_{\mathcal{G}_{v}}$ is trivial
- $\mathrm{Glu}^{|\mathrm{grph}|}(\mathcal{G}) \subseteq \prod_{v \in \mathrm{Vert}(\mathcal{G})} \operatorname{Aut}^{|\mathrm{grph}|}\left(\mathcal{G}_{v}\right)$: the subgp consisting of $\left(\alpha_{v}\right)_{v}$ s.t.

$$
\chi_{v}^{\text {cycl }}\left(\alpha_{v}\right)=\chi_{w}^{\text {cycl }}\left(\alpha_{w}\right) \text { for } \forall v, w \in \operatorname{Vert}(\mathcal{G})
$$

Theorem 7 [CbTpI, Theorem B, (iii)]
(1) The natural homomorphism

$$
\operatorname{Aut}^{|\operatorname{grph}|}(\mathcal{G}) \longrightarrow \prod_{v \in \operatorname{Vert}(\mathcal{G})} \operatorname{Aut}^{|\operatorname{grph}|}\left(\mathcal{G}_{v}\right)
$$

factors through the subgroup

$$
\mathrm{Glu}^{|\mathrm{grph}|}(\mathcal{G}) \subseteq \prod_{v \in \operatorname{Vert}(\mathcal{G})} \operatorname{Aut}^{|\operatorname{grph}|}\left(\mathcal{G}_{v}\right)
$$

(2) The resulting homomorphism

$$
\mathrm{Aut}^{|\mathrm{grph}|}(\mathcal{G}) \longrightarrow \mathrm{Glu}^{|\operatorname{grph}|}(\mathcal{G})
$$

is a surjective homomorphism whose kernel is given by

$$
\begin{gathered}
\operatorname{Dehn}(\mathcal{G}) \subseteq \operatorname{Aut}^{|\operatorname{grph}|}(\mathcal{G}) \\
1 \longrightarrow \operatorname{Dehn}(\mathcal{G}) \longrightarrow \operatorname{Aut}^{|\operatorname{grph}|}(\mathcal{G}) \longrightarrow \operatorname{Glu}^{|\operatorname{grph}|}(\mathcal{G}) \longrightarrow 1
\end{gathered}
$$

Observe: (1) is a formal consequence of "Synchronization of Cyclotomes".

Corollary 8 [CbTpII, Theorem A, (iii)]
Suppose: $(g, r) \notin\{(0,3),(1,1)\}$
\Rightarrow The injective (cf. Minamide's talk yesterday) homomorphism
Out ${ }^{\mathrm{FC}}\left(\Pi_{2}\right) \hookrightarrow$ Out ${ }^{\mathrm{FC}}\left(\Pi_{1}\right)$ is not surjective

Proof of the assertion that $\underline{\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{3}\right)} \hookrightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$ is not surjective
The structure of $\left(\cdots \rightarrow \Pi_{m+1} \rightarrow \Pi_{m} \rightarrow \ldots\right)$ depends only on (g, r)
\Rightarrow We may assume: $X^{\log }$ is totally degenerate, i.e., \forall vertex of \mathcal{G} is "of type $(0,3)$ " (in a spirit of Tripodal Transport cf. Mochizuki's talk, last week)
$(g, r) \notin\{(0,3),(1,1)\} \Rightarrow \exists v, w \in \operatorname{Vert}(\mathcal{G}): \underline{\text { distinct }}$
$\alpha_{v} \in \operatorname{Out}^{|\mathrm{C}|}\left(\Pi_{v}\right), \alpha_{w} \in \operatorname{Out}^{|\mathrm{C}|}\left(\Pi_{w}\right)$ s.t.
(a) $\alpha_{v} \neq \phi^{-1} \alpha_{w} \phi$ for \forall "geometric" isomorphism $\phi: \Pi_{v} \xrightarrow{\sim} \Pi_{w}$
(b) $\chi_{v}^{\text {cycl }}\left(\alpha_{v}\right)=\chi_{w}^{\text {cycl }}\left(\alpha_{w}\right)$ $\left(c f . " \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \subseteq \operatorname{Out}^{|\mathrm{C}|}(T) "\right)$
$\stackrel{(\mathrm{b}), \mathrm{Thm}}{\Rightarrow}{ }^{7,(2)} \exists \alpha \in \operatorname{Aut}^{|\operatorname{grph}|}(\mathcal{G})\left(\subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)\right)$ s.t. $\left.\alpha\right|_{\Pi_{v}}=\alpha_{v},\left.\alpha\right|_{\Pi_{w}}=\alpha_{w}$
Assume: Out ${ }^{\mathrm{FC}}\left(\underline{\Pi_{3}}\right) \hookrightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$ is surjective
$\Rightarrow \exists \alpha_{3} \in$ Out $^{\mathrm{FC}}\left(\Pi_{3}\right)$ whose image in $\overline{\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)}$ is $=\alpha$
But this contradicts (a) and Thm 6, (2).

Higher Dimensional Case

For simplicity: suppose $n \geq 3$
(Note: \exists result in the case of $n=2$)

Definition

- $\operatorname{Out}{ }^{\mathrm{FC}}\left(\Pi_{n}\right)^{|\operatorname{grph}|} \subseteq \operatorname{Out}\left(\Pi_{n}\right)$:
the pull-back of Aut ${ }^{|\operatorname{grph}|}(\mathcal{G}) \subseteq \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$ by
the injective (cf. Minamide's talk yesterday) hom. $\operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \hookrightarrow \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{1}\right)$
- $\mathrm{Glu}^{|\mathrm{grph}|}\left(\Pi_{n}\right) \subseteq \prod_{v \in \operatorname{Vert}(\mathcal{G})} \mathrm{Out}^{\mathrm{FC}}\left(\left(\Pi_{v}\right)_{n}\right)^{|\operatorname{grph}|}$: the subgp consisting of $\left(\alpha_{v}\right)_{v}$ s.t.
$\mathfrak{T}_{\text {a ctrl tpd in }\left(\Pi_{v}\right)_{3}}\left(\alpha_{v}\right)=\mathfrak{T}_{\text {a ctrl }} \operatorname{tpd}$ in $\left(\Pi_{w}\right)_{3}\left(\alpha_{w}\right)$ for $\forall v, w \in \operatorname{Vert}(\mathcal{G})$
(Note: A central tripod in $\left(\Pi_{v}\right)_{3}$ is a Π_{3}-conjugate of a central tripod in $\left(\Pi_{w}\right)_{3}$.)
Theorem 9 [CbTpI, Theorem F]
(1) $v \in \operatorname{Vert}(\mathcal{G}) \Rightarrow\left(\Pi_{v}\right)_{n} \subseteq \Pi_{n}$: commensurably terminal

$(1),(2) \Rightarrow$ One may define a "restriction homomorphism"

$$
\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)^{|\operatorname{grph}|} \longrightarrow \prod_{v \in \operatorname{Vert}(\mathcal{G})} \mathrm{Out}^{\mathrm{FC}}\left(\left(\Pi_{v}\right)_{n}\right)^{|\operatorname{grph}|}
$$

(3) The above "restriction homomorphism" factors through the subgroup

$$
\mathrm{Glu}^{|\operatorname{grph}|}\left(\Pi_{n}\right) \subseteq \prod_{v \in \operatorname{Vert}(\mathcal{G})} \operatorname{Out}^{\mathrm{FC}}\left(\left(\Pi_{v}\right)_{n}\right)^{|\operatorname{grph}|}
$$

(4) The resulting homomorphism

$$
\mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)^{|\mathrm{grph}|} \longrightarrow \mathrm{Glu}^{|\mathrm{grph}|}\left(\Pi_{n}\right)
$$

is a surjective homomorphism whose kernel is given by

$$
\begin{gathered}
\operatorname{Dehn}(\mathcal{G}) \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)^{|\operatorname{grph}|} \\
1 \longrightarrow \operatorname{Dehn}(\mathcal{G}) \longrightarrow \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)^{|\operatorname{grph}|} \longrightarrow \mathrm{Glu}^{|\operatorname{grph}|}\left(\Pi_{n}\right) \longrightarrow 1
\end{gathered}
$$

Observe: (3) is a formal consequence of "Tripod Synchronization" (cf. Thm 6).

Corollary 10 [CbTpII, Theorem C, (iv)]
Suppose: $n \geq 3$
$T \subseteq \Pi_{3}$: a central 3-tripod of Π_{n}
Suppose, moreover: either $r \neq 0$ or $n \geq 4$
(1) The tripod homomorphism

$$
\mathfrak{T}_{T}: \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\mathrm{Thm} 6,{ }^{(1)}}{=} \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T] \longrightarrow \operatorname{Out}(T)
$$

factors through the subgroup "GT" of $\operatorname{Out}(T)$.
(2) The resulting homomorphism

$$
\mathfrak{T}_{T}: \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right) \stackrel{\mathrm{Thm} 6,(1)}{=} \operatorname{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)[T] \longrightarrow " \mathrm{GT} " \text { in } \operatorname{Out}(T)
$$

is surjective.

Proof of (2)
The validity of the assertion depends only on (n, g, r)
\Rightarrow We may assume: $X^{\log }$ is totally degenerate, i.e., \forall vertex of \mathcal{G} is "of type $(0,3)$ " (in a spirit of Tripodal Transport cf. Mochizuki's talk, last week)
$\gamma \in$ "GT"
$\Rightarrow \forall v \in \operatorname{Vert}(\mathcal{G}), \exists \gamma_{v, n} \in \operatorname{Out}{ }^{\mathrm{FC}}\left(\left(\Pi_{v}\right)_{n}\right)^{|\operatorname{grph}|}$ whose image in $\operatorname{Out}\left(\Pi_{v}\right)$ is $=\gamma$
$\stackrel{\operatorname{Thm} 6,{ }^{(2)}}{\Rightarrow} \forall v \in \operatorname{Vert}(\mathcal{G}), \mathfrak{T}_{\text {a ctrl tpd in }\left(\Pi_{v}\right)_{3}}\left(\gamma_{v, n}\right)=\gamma$
$\stackrel{\mathrm{Thm} 9,}{\Rightarrow}{ }^{(4)} \exists \gamma_{n} \in \mathrm{Out}^{\mathrm{FC}}\left(\Pi_{n}\right)^{|\mathrm{grph}|}$ whose image in Out ${ }^{\mathrm{FC}}\left(\left(\Pi_{v}\right)_{n}\right)^{|\operatorname{grph}|}$
is $=\gamma_{v, n}$ for $\forall v \in \operatorname{Vert}(\mathcal{G})$
$\stackrel{\text { Thm 6, }}{\Rightarrow}{ }^{(2)} \mathfrak{T}\left(\gamma_{n}\right)=\gamma$, as desired

References

[CbCsp] On the Combinatorial Cuspidalization of Hyperbolic Curves
[CbTpI] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves I: Inertia Groups and Profinite Dehn Twists
[CbTpII] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II: Tripods and Combinatorial Cuspidalization
scratch paper
scratch paper

